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ABSTRACT

This thesis postulates deep dielectric charging of exterior spacecraft

dielectrics as a mechanism responsible for the sunlit charging event observed

on the ISEE1 spacecraft. Deep dielectric charging can cause a negative

potential to develop on the insulating surfaces of the spaceeroft o resulting --

the formation of a potential barrier capable of suppressing photo and secondary

emission. These events can lead to overall negative charging of the spacecraft.

Calculations were made using in situ measurements from onboard the ISEE1

and the SCATHA spacecraft. The results indicate, within the range of the data

used, that this mechanism is a viable explanation for the ISEE1 charging

event. This mechanism can be generalized to most synchronous orbit

spacecraft.
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L OVERVIEW

A. DEFINITION AND EFFECTS

1. Spacecraft Charging

Spacecraft charging is the process by which a spacecraft develops a

potential relative to the surrounding plasma. The majority of spacecraft

charging events have been reported on satellites in geosynchronous orbit.

Spacecraft charging at high levels was first reported in 1972 by DeForest

[Ref. l:p. 651-659] on the Applications Technology Satellite (ATS)-5. DeForest

associated the high negative potentials recorded on ATS-5 with the injection

of hot plasma into synchronous orbit by magnetospheric substorm activity.

Spacecraft charging is important because it has been associated with

anomalous satellite behavior, and even system failure. A satellite anomaly is

an undesired event in a satellite subsystem such as a spurious detector signal,

or an unintended logic reset in an electronic system. This association was first

demonstrated by Fredricks and Scarf who noticed in late 1971 several

anomalies in the behavior of certain subsystems onboard satellites in

synchronous orbit [Ref. 2:p. 277-285]. Out of 23 observed anomalies they

correlated 19 definitely, 2 probably, and 2 questionably to ground

magnetograms indicating storm or substorm activity in the magnetosphere.

Coupled with DeForest's observation of spacecraft charging under the same
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circumstances, a strong case was made for a mechanism involving magnetic

storm induced spacecraft charging to explain these anomalies. A later study

by Pike and Bunn also presents strong statistical evidence correlating

anomalies onboard satellites of the Defense Satellite Communications System

(DSCS) to magnetospheric substorm activity [Ref. 3:p 45-60]. The anomalies

studied were logic reset anomalies, (50 total), converter switching anomalies

(9 total), and spinup anomalies (3 total). Ninety percent of the logic reset

anomalies, 100% of the converter switching anomalies, and 67% of the spinup

anomalies were associated with magnetic substorms. Pike and Bunn, however,

pointed out that substorm activity occurs much more frequently than do

satellite anomalies. Also ground magnetograms used to infer the state of the

magnetosphere are not in situ measurements of the magnetospheric

environment. They conservatively concluded that substorm activity may be a

factor in producing satellite anomalies and spacecraft charging could be an

undeilying causative factor. Later work has substantiated these conclusions,

and expanded the association between environmental factors and spacecraft

anomalies. An entire program, the joint NASAIUSAF Spacecraft Charging at

High Altitudes (SCATHA) program, was initiated and a satellite (P78-2) was

flown in 1979, to study the characteristics of spacecraft charging, and the

subsequent satellite response [Ref 4:p 15-30]. SCATHA showed the correlation

between spacecraft charging, arcing, and logic upsets (anomalies)

[Ref. 5:p. 425-431].
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Spacecraft charging is not the only environmental hazard faced by

satellites. For instance, other concerns include single event upsets,

micrometeorite impacts, and system degradation from accumulated radiation

dosage. These perils, however, will not be discussed in this thesis.

2. Types of Spacecraft Charging

There are two types of spacecraft charging, external or surface

charging, and the internal charging of dielectrics. Surface charging is the

better known phenomenon. It is associated with relatively low energy, 10-80

keV, electrons that traverse geosynchronous orbit as a result of magnetic

substorms. Internal charging of dielectrics occurs from the deposition of

relatively high energy electrons within the bulk of a dielectric; the electron

energy range significant for internal charging is highly material dependent,

but ranges from key to MeV energies.

a. Surface Charging

Surface charging is the most widely studied form of spacecraft

charging. It results from the emission and collection of charged particles to

and from the surface of the satellite. Since the particles are moving they can

be considered as currents, and thus the equilibrium potential of the spacecraft

is determined by the balance of these currents and the capacitance of the

vehicle. The predominant current sources (in relative order of magnitude) are:

- photoemitted electrons
- ambient electrons
- secondary electrons (true secondary electrons and backscattered electrons).
- ambient ions
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Other current sources are secondary electrons from ion impacts, currents

generated by the movement of the satellite across local ambient magnetic field

lines or relative to the ambient ion populations, and currents from man-made

sources such as plasma beams from ion sources. These latter effects are

relatively small in magnitude or infrequent in occurrence therefore these

sources will not be considered here [Ref. 6:p. 168].

If a spacecraft charges uniformly, as in a completely conducting

vehicle, then the absolute potential would only affect a limited number

scientific measurements, such as that of plasma fluxes, and poses no

operational hazard to the spacecraft. However if part of the spacecraft is

electrically isolated from the main spacecraft body, for example a

nonconducting thermal blanket, then a charge differential can build up,

producing potential gradients that result in large electric fields across the

spacecraft. These electric fields pose a serious hazard to the spacecraft by

inducing electrical breakdown (arc discharges).

Arc discharges are essentially the redistribution of charge. Since

they involve the rapid motion of charged particles a transient electromagnetic

signal is generated by the breakdown. This signal is referred to as

electromagnetic interference, or EMI. EMI can induce undesired signals in

electronic circuits, and also excite currents in the skin of the satellite which in

turn can induce anomalous currents in internal satellite wiring. Both can

cause satellite anomalies producing an unintended logic change in an electronic
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system, or a spurious detector response. The electrical breakdown process

produces localized heating and the evolution of material at the site of the arc.

On sensitive satellite components, such as thermal control or optical surfaces,

even minor physical damage can seriously degrade performance. These effects

have been produced in laboratory simulations and inferred from orbital

observations. [Ref. 2:p. 295-304, Ref. 7:p. 61-76, Ref. 8:p. 237-246]

Arc discharges have been well correlated to satellite anomalies by

Shaw, Nanevicz, and Adamo [Ref. them]. An instrument designed to detect

both satellite surface charging events and discharges occurring on the exterior

of the satellite was flown on a synchronous altitude satellite. They observed

two distinct types of discharges, the first occurs during energetic electron

injection events, i.e. magnetospheric substorms, and are attributed to

differential surface charging. The second is independent of geomagnetic

activity, but is strongly spin synchronized and occurs throughout the satellite's

orbit, most frequently at local dusk. During the time of the experiment, 35

anomalous events on the spacecraft were reported, 31 coinciding with recorded

discharges. [Ref. 7:p. 61-76]

b. Deep Dielectric Charging

Deep dielectric, or bulk charging is the deposition of charge within

the body of a dielectric. If the rate at which incident energetic electrons

deposit in the bulk of a dielectric material exceeds the rate at which the charge

leaks out due to the total conductivity (intrinsic conductivity plus radiation
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induced conductivity), then a bulk charge and subsequent potential will build

up. This can have deleterious effects on spacecraft systems. Foremost is

electrical breakdown of the dielectric material.

Deep dielectric charging was first proposed as a discharge

mechanism for dielectrics onboard spacecraft by Meulenberg

[Ref. 8:p. 237-246]. He departed from the conventional belief that the

discharge was through or between spacecraft surface components and proposed

a bilayer discharge mechanism through the dielectric. This type of mechanism

is able to explain many of the observed satellite anomalies that do not

correlate with discharges induced by surface charging. When arc discharges

were first associated with satellite anomalies, two distinct types, alluded to

previously, were recognized: those that correlated with surface charging, and

those occurring when surface charging was not a viable explanation

[Ref. 7:p. 61]. Considerable work has since been done on the mechanism of

electrical breakdown in irradiated dielectrics, and their association with

anomalous satellite behavior.

Vampola summarized the viability of deep dielectric charging at

synchronous altitude, and presented several definitive examples of this

mechanism [Ref. 9:p 21-30]. The most common ailment associated with deep

dielectric charging is the deposition of charge in the insulating covers on cables

exposed directly to the space environment. When electrical breakdown is

reached, a spurious signal occurs in the cable and thus in the connected
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electronic component. Numerous cases of anomalous behavior attributed to

deep dielectric charging have been identified [Ref. 10:p. 15-7, Ref. 11:p. 25-1,

Ref. 12 :p. 50].

Descriptions of radiation induced dielectric charging and discharge

theory most useful to this thesis are by Wenaas concerning the order of

magnitude calculations of dielectric charging in a high energy natural

environment; by Fredrickson, and by Reagan et al. in an application of theory

to observations from the SCATHA satellite [Ref. 13:p. 2281-4,

Ref. 14:p. 337-34?, Ref. 15:p, 386-412, Ref 16:p. 1-28, Ref. 17 :p. 354-365]

The most complicated aspect of the dielectric charging process is the

calculation of electron transport through the material resulting in a dose rates

and charge distribution. Local dose rate is necessary to calculate the radiation

induced conductivity which, combined with the intrinsic conductivity of the

material, governs the leakage current. Electron transport is most accurately

calculated through Monte Carlo calculations. The most definitive work in this

area is that of M. J. Berger and S. M. Seltzer of the National Bureau of

Standards in a fortran program, ETRAN. This work has evolved into the Tiger

series of electron and photon transport code. Other Monte Carlo simulations

exist, such as the AURORA code used by Reagan et al. [Ref. 17:p. 358], and

POEM used by Beers et al. [Ref. 18:p. 209] TRW is currently developing a

program, Deep Charging Analytical Technique (DCAT) that utilizes an

algorithm developed by Tabata and Ito. [Ref. 19:p. 226-239, Ref. 20, Ref. 21]
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3. Environmental Factors

Environmental factors affecting earth orbiting satellites are primarily

the charged particle populations trapped by the earth's magnetic field. The

geometry of the earth's magnetic field governs the structure of the particle

populations, and the cavity in which they are contained is the magnetosphere.

The geomagnetic field produces a semipermeable barrier to the flow of solar

wind plasma and the resulting interaction produces a magnetic bubble, the

magnetosphere, in interplanetary space (see Figure 1).

The magnetospheric radiation environment is distributed spatially by

particle type, and by particle energy. The most common parameter used to

characterize the magnetosphere is Mclwain's parameter L (McIlwain, 1961).

The L values are derived from surfaces generated by the rotation of a dipole

field about the earth's magnetic axis. The surfaces (field lines) are labeled by

the distance from the center of t'-e earth, in units of earth radii, to the

minimum B (the magnetic equator), on that line. The inner zone is the region

up to L = 2.5 and encompasses low earth orbits. The outer zone is the region

beyond L = 3.0 out to the magnetopause, and encompasses geosynchronous

orbits. The magnetopause is the "boundary" between the solar wind and the

magnetospheric plasma. [Ref. 22:p. 341]

The predominant characteristics of the inner zone, from the point of

view of spacecraft operations, are its relative stability, and intense high energy

proton fluxes. These fluxes exceed 10' protons/cm2-sec-sr for energies greater
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than 50 MeV. The charge particle flux in the outer zone is much more

variable. Both the electron and proton fluxes are strongly influenced by

magnetic activity. Variations, dependent on local time, in particle populations

at synchronous altitude (L>5) were first reported in a study of ATS-1 data [Ref.

23:p.5257-5264]. Enhanced particle fluxes were seen during periods of

magnetic activity in the local midnight region of synchronous orbit. The

postulated source of these observed particle populations was an influx of

energetic plasma from the magnetospheric tail. These ideas were further

refined by DeForest and Mcflwain [Ref. 24:p.3587-3611]. Observations from

ATS-5 reHxaled frequent injections of hot plasma into the synchronous orbit

region of the magnetosphere. These plasma fluxes were found to have a one-

to-one correspondence with magnetospheric substorms. Additionally, these

injection events were found to insert a relatively discrete set of particles,

referred to as a "plasma cloud", into the region. Those injections resulted in

a second particle population superimposed on the preexisting ambient particle

distribution (see Figure 2). These injection events can precipitate high levels

of spacecraft charging, and are associated with the charging events on ATS-5

[Ref. L:p. 653]. This sequence of events results in the well documented

"midnight to dawn" period of high satellite anomaly activity (see Figure 3).

Other sources of hazardous radiation to spacecraft systems include

cosmic rays and solar flare protons. The cosmic ray flux is on the order of

1/cm2 -sec, and their interaction with spacecraft systems cause SEUs of
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sensitive microelectronic devices and background noise in sensitive sensors

systems. Energetic protons (E > 5 MeV) produced by solar flares can reach

the earth within hours after a flare given the proper alignment of the

interplanetary magnetic field between the sun and the earth. These particles

have direct access to the magnetosphere over the polar caps and to

synchronous orbits. The energetic proton fluxes may be as high as 105/cm 2-sec-

sr and produce dose rates in excess of 100 rad/hr. The radiation dose resulting

from this intense exposure is extremely damaging to spacecraft subsystems

such as solar cells, amplifiers and optical sensors. Spacecraft weight

considerations have produced a tendency to use thinner exterior materials,

such as glass solar cell coverslides. Thinner coverslides are less able to shield

sensitive semiconductor material from radiation damage, conversely, the

potential for spacecraft charging from thick dielectric charging increases with

thickness of the dielectric. Thus optimum shielding thicknesses are obtained

from balancing these two competing requirements. The energetic protons also

produce SEUs. Energetic electrons are also produced by these events, but the

additional fluxes are not significant in comparison to the existing electron

population.
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B. PURPOSE

Daylight charging of geosynchronous satellites is attributed to differential

charging between shadowed insulators and conducting surfaces. Insulating

surfaces in shadow can reach large negative potentials because of the lack of

photoemission and the electrical resistance of the material. This differential

charging can produce electrostatic barriers about the satellite which can

suppress photoemission and secondary electron emission from the conducting

surfaces. Under these conditions the entire satellite will charge to a negative

potential [Ref. 25:p. 1313-1319]. Formation of a potential barrier was observed

on ATS-6 [Ref. 25:p. 6809-6819]. Figure 4, a diagram of ATS-6 (which is 3-axis

stabilized) shows that it will always have some surfaces in shadow for a

substantial period of time.

Not all cases of spacecraft charging in sunlight can be attributed to

shadowed insulating surfaces. ISEE1 is one in a series of three satellites

which comprise the International Sun Earth Explorer project. The satellite is

essentially a spin-stabilized cylinder (see Figure 5). Despite its lack of

extensive shadowed surfaces, and its construction to electrostatic cleanliness

specifications, significant charging events have been recorded on ISEEL. The

satellite reached a negative potential on the order of -100 volts in sunlight as

it transited the synchronous orbit region of the magnetosphere at 0300 LT on

17 March, 1978 [Ref. 27:p. 5568-5578]. Olsen et al. observed a potential

barrier on the order of -10 to -20 volts with respect to the satellite body in
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conjunction with this event [Ref. 2 6:p. 6809]. They also determined the barrier

was not the result of space charge effects, and thus was most likely the result

of differential charging of satellite surfaces. However, the spin rate of the

satellite, 20 rpm, does not allow sufficient time for negative charge to build up

on shadowed surfaces, (ignoring "ends"). The time constant of differential

surface charging for dielectrics is on the order of a minute. [Ref. 28:p. 435]

Thus from the standpoint of differential surface charging, the total charge on

the surface of the satellite must always be greater than zero. This leaves no

obvious explanation for the observed charging events of ISEE1 [Ref. 29]. It is

important to identify this charging mechanism, and thus the overall

expectation for the effectiveness of this type of electrostatic cleanliness

measure.

This thesis will examine charging of exterior spacecraft dielectrics, and

determine if sufficient charge can be deposited to produce differential charging

of the dielectrics with respect to the spacecraft frame. These processes are

illustrated in Figure 6. This occurs if the Gaussian pillbox in Figure 6

contains an overall negative charge. A net negative potential results, and

potential barriers may form allowing the entire spacecraft to charge negatively.

The formation of a potential barrier is illustrated in Figure 7, the "saddle

point" corresponds to the potential barrier. This mechanism will be applied to

the ISEE1 charging event. This thesis will show that the charging of exterior

dielectrics is a viable mechanism for differential surface chafigng.

12



II. THEORY

A. SURFACE CHARGING

The equilibrium potential of a satellite will be such that the net current to

the satellite surface is zero. This can be described by

(1) Je 0 o+Jsc+ J3mcKscArr=-JD D

where

- Jp~oo = the photoelectric current
- JSEC = the ambient particle current
- JBS = the backscattered electron current.

In general the net current to a sunlit satellite surface is positive for all

magnetospheric plasma environments outside of L = 3. This is because the

photocurrent is much larger than the ambient plasma currents (roughly an

order of magnitude larger). In the absence of sunlight, the secondary electron

emission can still balance the ambient electron current for low temperature

environments [Ref. 30:p. 493].

The potential can be calculated from the simple relationship Q = VC,

however in practice this is an extremely complicated process owing to the

interrelationship between the currents and the potential. As a positive

potential develops on the satellite, it modifies the current flow to the satellite

surface. This process can be expressed simply as

13



2) TMTA " (-TJflV'J-Ssc) e-- +J-BS --JA

where KT is the characteristic temperature of the emitted photo and secondary

electrons, and 0 is the spacecraft surface potential. The energy of the

backscattered electrons is high enough to ignore the effect of the developed

potential.

As the satellite approaches equilibrium the potential develops such that the

total current flow to the satellite surface goes to zero and equation (1) is

satisfied. These calculations are complicated by several factors. For instance,

the photoelectric current is zero for surfaces in shadow. The area of a satellite

in shadow is dictated by the satellite geometry, the type of stabilization (spin

or three axis), the satellite orbit, and the time of day and the time of year. The

material characteristics of the satellite surface are also important. Aside from

the gross differences between conductors and insulators, the photoelectric,

secondary, and backscattered electron yields are material dependent. These

and other factors combine to present a very complicated and fragile

equilibrium state.

1. Photoelectric Emission

Photoelectric emission results from the interaction between incident

photons and a surface. If the photon energy exceeds the work function of the

surface material, and electron is emitted. The energy of the emitted electron

14



material. For spacecraft charging applications the enHxgy spectrum of

electrons emitted due to solar radiation is characterized by a Maxwellian

temperature of 2 eV. Saturation current densities (i.e. the maximum

photoelectric current density emitted from a surface at normal incidence and

zero potential) for many common spacecraft materials have been computed

by Grard [Ref. 31:p. 171] and are shown in Table I. These values are only good

to within a factor of 10 and vary not only with surface material, but also

surface condition [Ref. 29].

2. Thermal Flux

The ambient plasma in the magnetosphere is generally described by one

or more Maxwellian distributions, [Ref 32:p. 2]

3 -2

(3) F (v) -( 21 ) I - KT

211KT,

- n = number density of the ith species
- m = mass of the ith species
- T = temperature of the ith species
- v = velocity of the ith species
- k = Boltzmann constant
- F = distribution function.

The ambient particle flux to a surface is given by

15



(4) I -fffn(C.n) F(0d 3v

when solved this yields the thermal flux,

2ILi

The ambient electron current density to the satellite can be written

()kT .
1  kT'I

(6) TNO - E nl E . n,@ 2m
27trne 27tMp

where e is the charge on an electron, T is the appropriate temperature, n is

number density and m is mass.

3. Secondary Electron Emission

Secondary electron emission occurs when an electron impacts a surface.

The incident electron may undergo one of three processes: reflection, true

secondary emission, or backscattering. Reflection is generally only significant

at very low energies, E < 10 Ev, and is generally negligible. Secondary

emissions result from the impacting electron losing energy while in the

material. Portions of this energy can then excite other electrons which may

escape the material at low energy, similar to that of photoelectrons (about 2

eV) [Ref. 33:p. 1209]. The secondary electron yield, S(E), is defined as the ratio

between emitted-secondary, and incident primary electrons. Secondary
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emission is an important process in spacecraft charging because for certain

energy ranges and materials 8 can be greater than 1. The following

expression, generally attributed to Sternglass (circa 1950), provides a useful

and accurate yield function

E -2 --

(7) 8(E) - 7.48 (E-)e
max

[Ref. 34:p. 1138]. The material dependent parameters are defined as follows:

-Emax= the energy where 8 has its maximum
"max = the secondary yield at EmW.

Table II contains secondary emission parameters for various materials.

Backscattering refers to higher energy particles, E > 50 eV, which leave

the surface at energies only slightly lower than that of the incident electron.

Backscattered electrons are distinguishable from true secondary electrons by

their greater emitted energies. A very useful form of the backscattered

electron yield function is

g

(8) *M(E) - 0.1(1.0 0.5) ( +e3 5.0 )
E

where 0 is

(9) p 0.0 (1 .0 - ( 2._o) (o.037Z))
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Z is the effective atomic number of the material, and E is in keV. This yield

function is valid for E > 50 eV, for E < 50 eV SBS is equal to 0

[Ref. 35:p. 104-105].

Both secondary emission and backscattering occur for ion impacts, but

-the fluxes are two orders of magnitude less than for those from electrons and

will thus not be considered in this work [Ref. 34 :p. 1138].

B. DEEP DIELECTRIC CHARGING

Deep dielectric charging results from the deposition of charge within the

body of a dielectric. The rate at which charge builds up in a dielectric is

governed by the rate at which electrons are deposited, and rate at which they

leak out of the dielectric. Thus total charge density depends on the balance of

these two processes. The accumulation of charge in a volume is dictated by the

continuity equation:

(10) V.J0 + VoE ,

where JD is the incident high energy electron current.

Wenaas solved as the one dimensional case for a slab of thickness d by

approximating the divergence of JD as

(Ii) J, - Jo
d
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J, is the current entering the slab and J. is the current exiting the slab. In

which case, assuming zero initial stored charge, the charge density as a

function of time is:

J1 - Jo _
(12) P d e

[Ref. 13:p. 2281].

1. Electron Deposition

In order to calculate the charge accumulated, the number of electrons

stopped within the dielectric must be determined. Energetic electrons incident

on a surface suffer energy loss and scattering and some are eventually

absorbed by, (i.e. deposited within) the material. There are four types of

interactions that can take place between electrons and matter: (1) inelastic

collisions with atomic electrons, (2) inelastic collisions with atomic nuclei, (3)

elastic collisions with atomic electrons and (4) elastic collisions with atomic

nuclei.

Inelastic collisions are the primary means by which electrons lose

energy in matter. An inelastic collision with a nucleus results in a pulse of

electromagnetic radiation (bremsstrahlung). These radiative losses are

generally more important for relativistic electrons. Inelastic collisions with

atomic electrons often result in the excitation or release of atomic electrons as

well as a resulting energy loss in the penetrating electron. The probability of

each type of collision is calculated from scattering theory. [Ref. 36:p. 2-1,2-2]
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The statistical nature of these processes results in charge and energy

distributions along the depth of the material. The most accurate means of

solving the problem of electron transport in matter is the Monte Carlo method.

Berger and Seltzer have developed a Monte Carlo code to calculate the charge

distribution of electrons in matter, and have compiled this data for many

materials [Ref. 37:p. 1-169].

Several computer codes exist to solve electron transport, as mentioned

previously. The algorithm developed by Tabata and Ito has been used

extensively, however the author was unable to reproduce their published

results with the algorithm, thus it was not used for this analysis.

[Ref. 19:p. 226-239]

2. Dielectric Conductivity

It can be seen from equation (12) that the saturation threshold is

proportional to the conductivity of the dielectric material. The time required

to reach saturation is on the order of the relaxation time, r = doc.

[Ref 13:p. 2282]

The conductivity of a dielectric has two components, the intrinsic

conductivity of the material and the radiation induced conductivity, (RIC). The

total conductivity of the material can be written as a = ai + oyr where ai is the

intrinsic conductivity of the material and cy. is the radiation induced

conductivity.
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a. Radiation Induced Conductivity

Radiation induced conductivity is related to the dose rate and two

material dependent parameters as follows:

(13) a - k

D is the dose rate, k is the coefficient of radiation induced conductivity, and A

is a material dependent parameter between 0.5 and 1.0 [Ref. 38:p. 2532]. For

most purposes setting A = 1.0 provides sufficient accuracy. The constant k

must be determined empirically, and has been for many materials, by as many

researchers. Published values can vary over more than two orders of

magnitude for typical materials. Wall et al. have provided a useful guide to

this and other pertinent dielectric properties [Ref. 39:p. 569-591]. Table III

contains k for several typical spacecraft materials.

(1) Dose Rate. Dose rate is the rate at which energy is deposited

within a material from incident radiation. It is measured in units of rads per

second. A rad is 100 ergs per gram. For materials with a low effective atomic

number dose is directly proportional to the electron kinetic energy. A quantity,

specific thickness (T.), has been defined in terms of electrons/cm2-Mev so that

a dose profile independent of material and kinetic energy can be calculated.

This curve is shown in Figure 8. [Ref. 36:p. 2.16]
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Specific thickness is given by

(14) T, p pxN, __, [)i]

T ( ZA cm2 MeVJ

where 4 is the weight fraction of the ith element in the material,

(15) f- - n1 At

Parameters are defined as follows:

- n, = the number of atoms in the ith element of the material
- x = the depth in the material in cm
- No = Avogadro's number
- T = electron kinetic energy in MeV
- p = material density in g/cm3

- Z = effective atomic number
- A = atomic weight.

The dose profile for a low Z material is obtained by modulating the front

surface dose with the curve in Figure 8. The front surface dose used is that

for collisional stopping power. Collisions are the mechanism by which energy

is deposited in the material, the energy from radiative stopping power is not

deposited locally. Dose rate is obtained by multiplying the dose by the electron

flux.
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III. DATA

A. SOURCES

1. SCATHA

The SCATHA program, as mentioned, was a joint NASA/USAF project

launched in 1979 to study spacecraft charging phenomena, and satellite

response to it. Much of the experimental data used in this thesis was collected

by instruments onboard the P78-2 (SCATHA) satellite. These instruments are

the SSPM, SC3, and SC9. The next thrHx sections will provide descriptions

of these instruments.

a. SSPM

The following description of the Satellite Surface Potential Monitor

(SSPM) was taken from Mizera et al., 1980 [Ref. 40:p. 277]:

The three SSPM instruments contained four electrostatic field meters
designed to measure the potentials from material surfaces mounted at fixed
positions above the sensors. Positive and negative currents flowing through
the sample materials are collected on the metalized backing and sent to an
electrometer circuit. All measurements are digitized, accumulated, and
read out every second. The current and voltage data are accumulated for
1.0 and 0.25 sec, respectively.

These insulating materials are typically 5 mil thick with aluminum
backing the Kapton, Silver backing the Teflon, and in the case of the quartz
fabric mounted on Teflon a hole was cut though the entire Teflon backing
so that the electric field form the fabric would reach the sensor. The
collecting area for the current was determined by the size of the sample.
Two sizes of samples were flown on the SSPM payload. With the exception
of Kapton, all samples were approximately 13 cm square. In addition to the
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standard smaller samples, one Kapton sample approximately 29 cm square

(SSPM-2) was flown to examine the scaling effects of charging.

b. SC3

The following description of Lockheed high-energy particle

spectrometer, SC3, was obtained from Davidson, et al., 1988 [Ref. 41:p. 79]:

The SC3 particle telescope [Reagan et al., 1981a] employs a 200-urn-
thick surface barrier silicon detector to analyze electron in the range 47-299
keV. Behind this is a stack of five 2-mm-thick surface barrier silicon
detectors used to analyze electrons in the range 263-4970 keV. Spurious
high-energy particles are mostly eliminated by a surrounding anti-
coincidence plastic and phototube system and aluminum shielding. A
tungsten shield is used to attenuate bremsstrahlung radiation produced by
electrons within the region shielded by aluminum. The detection of
electrons below 300 keV is unaffected by bremsstrahlung because of the low
volume of the sensor. Above 300 keV the counting rates are moderately
contaminated by bremsstrahlung, especially in the first energy above 300
keV; the bremsstrahlung contamination has been estimated and corrected
for in the processing of the data. The particle type and energy range for
analysis are uniquely established by specifying in the on-board instrument
memory the coincidence/anticoincidence logic conditions and the gain and
energy thresholds for the various sensor elements.

C. SC9

The following description of the SC9 UCSD Charged Particle

Experiment was taken from The IMS Source Book, [Ref. 42:p. 73-78]:

The instrument consists of five electrostatic analyzers, three for ions and
two for electrons. Pairs of ion and electron analyzers are in rotating heads.
One head is for low energies the other for higher energies. The third ion
analyzer is a low energy unit mounted to view perpendicular to the spin
axis. The rotating heads can rotate the analyzer fields of view over a range
of angles (about 220 degrees) which includes both parallel and
perpendicular to the spin axis. The two rotating heads scan in orthogonal
planes.
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This instrument provides the detailed plasma distribution function
measurements over a reasonable period (16 sec for a spectrum), which is
longer (314sec) if all pitch angles are to be covered. The sensor can also
select any of the five outputs for connection via a filter to a broadband
transmitter. This allows special operations in which rapid fluctuations in the
particle fluxes can be followed.

2. 1979-053

1979-053 is the international designator of the satellite on which two

other instruments that collected data used in this thesis flew. The

instruments are the Charged Particle Analyzer (CPA) and the Spectrometer for

Extended Electron measurements (SEE). Both instruments were provided by

the Los Alamos National Laboratory.

a. CPA

The following description of the CPA was taken from The IMS

Source Book, [Ref 42:p 82-83]:

Each CPA consists of separate electron and proton sensor systems. The
electron detectors are designated LoE (low-energy electron) and HiE (high-
energy electron). LoE consists of a fan of five separate detector-collimator
units at 0 degrees, +/- 30 degrees, and +/- 60 degrees to the spacecraft
equatorial plane. The spacecraft rotate with a 10-s period about an axis
points continually toward the center of the earth. Thus complete (over the
unit sphere), continuous pitch angle measurements of the electron
distribution are made by LoE each 10-s for essentially all magnetic field
orientations. Each LoE sensor-collimator unit has a geometric factor of 3.6
x 10' cm 2-sr and is sensitive to electrons of energy between 30 and 300 keV
(in 6 channels). The basic CPA sampling rate is 8 ms, so that each energy
channel of each sensor is sampled 40 times per 10-s spacecraft rotation (i.e.,
1200 total samples per rotation).

The HiE subsystem consists of a single detector-collimator unit that is
pointed radially outward in the spacecraft equatorial (0 degree) plane. The
HiE geometric factor is 1.8 x 10.2 cm 2-sr and its range of sensitivity is
between 0.2 MeV and about 2 MeV. Since a single collimator unit sphere
is sampled as the spacecraft rotates. For normal, approximately dipolar

25



magnetic field orientations nearly all pitch angles would be sampled by
HiE, but for nondipolar (taillike) magnetic field configurations often
encountered near midnight at 6.6 earth radii, very limited pitch angle
sampling can result.

Both LoE and HiE have relatively thick aluminized mylar windows
immediately in front of the sensitive solid state detector elements. This
window eliminates contamination by sunlight, by very low energy (< 10
keV) electrons, and by protons below about 250-300 keV. Because of this
feature, LoE provides a "clean" measurement of the 300 keV electron
component, free of proton or low energy pileup contributions. In the case
of HiE, the measurement relies on the soft spectral nature and low relative
flux ratio of the > 300 keV proton (ion) component [Baker et al., 1979c] to
effect the 0.2-2.0 MeV electron measurement in the presence of background
ions.

b. SEE

The following description of the SEE was also taken from The IMS

Source Book [Ref. 42:p. 83-84]:

The SEE combines thick solid state (dE/dx) detector elements with a
bismuth germanate scintillator (total E) element to provide a new and
unprecedented look at the very high energy electron component in the outer
magnetosphere.

The energetic proton measurement at 6.6 earth radii is made by two
separate CPA particle telescope systems: LoP and HiP. LoP is a single
thin (about 40 um or 80 um on 1979-053) surface barrier solid state detector
in front of an anticoincidence scintillator element. A sweep magnet is part
of the LoP collimation system and eliminates <0.5 coincidence scintillator
cup. HiP also has strong a sweeping magnet to eliminate contamination by
< 1.0 MeV electrons. The High-energy proton telescope measures protons
between 0.4 and 150 MeV in 16 quasilogarithmic differential energy
channels with a geometric factor of 4.4 x 10.2 cm2-sr (about 8 x 10.2 cm2-sr
for EP> 25 MeV).
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3. ISEE-1

a. LEPEDEA

The following is a description of the LEPEDEA high energy electron

spectrometer [Ref.27:p. 5569]:

The University of Iowa LEPEDEA, is a quadrispherical detector, divided
into 7 segments to cover the polar angle. This detector covers a 6' x 380
solid angle. During periods of low bit rate telemetry the detector covers the
200 eV to 45 keV energy range in 32 steps [Frank et al., 1978].

b. MEPI

The following is a description of the MEPI electron spectrometer

[Ref. 27:p. 5569]:

The Medium Energy Particles Instrument (MEPI) cover the 20 -1200
keV energy range with 8 channels in low bit rate. The detectors provide an
angular resolution of 100 x 450 at low bit rate including spin and scan
platform. Energy resolution is - 5%, with a geometric factor of 10.2 cm 2 sr.
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IV. RESULTS

A. ISEEI CHARGING EVENT

As discussed previously, ISEEl is a spin stabilized, cylindrical satellite.

All exterior surfaces, with the exception of the center, or "belly band" region

housing the satellite instruments, are covered with solar cells (Figure 5). The

solar cells are protected by silicon glass (Si0 2) cover slides, a dielectric

material. The belly band region consists primarily of aluminum, a conductor.

Thus the scenario exists for differential surface charging between conducting

and insulating surfaces, however the satellite's high spin rate (20rpm) and lack

of extensive shadowed surfaces preclude conventional differential charging

mechanisms. It must be assumed that the electrostatic cleanliness measures

adopted on ISEE1 were not completely effective, since the satellite charged.

Electrostatic cleanliness was to be achieved by coating the entire satellite with

a conducting material, indium oxide. This coating appears to have been largely

effective. The problem area appears to have been a breakdown in the

grounding of the oxide surface to the body, leaving the cover slide surfaces

floating.
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1. Charging Environment

The charging environment encountered by ISEEl as observed by the

LEPEDEA and MEPI instruments can be described by three essentially

discrete populations. The lower energy spectrum (below 1 keV) has a

Maxwellian density of roughly 3.7x105 electrons/m and a plasma temperature

of 314 eV. The keV electrons are characterized by a Maxwellian density of

approximately 2.0x105 electrons/m and a plasma temperature of 8.0 keV.

These are values typical of the plasma sheet. [Ref. 27:p.5573] The higher

energy spectrum (100 to 300 keV) is higher than typically observed in this

region and was found to roughly follow an inverse power law of E3 . The DST

index is plotted in Figure 9 for several days prior to the observed charging

event. Several substorms are apparent. ISEE1 is not in geosynchronous orbit,

it merely transits this region of the magnetosphere twice during an orbital

period. It therefore is only subjected to the geosynchronous environment for

about an hour per transit.

Surface charging currents associated with this plasma environment are

shown in Table IV. Figure 10 is a sample of the ISEE1 data used for

calculations in following sections. Since differential flux is a function of both

energy and angle, [J(E,a)], a pitch angle of 90' was chosen as appropriate for

this analysis. However, the flux varies as much as a factor of 10 over pitch

angle (see Figure 11). Since trapped fluxes (a = 900) are at the minimum in
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the pitch angle distribution, this choice provides a lower bound on the

differential flux.

2. Mechanism Criteria

In order to attribute the ISEE1 charging event to the deposition of

charge within the body of exterior dielectrics, the following condition must be

satisfied:

(16) fJdt + f (J - J, c- J..)dt > f (J,. + J.c + JT.- J. ) d

T P F
2 2

The variables are defined as follows:

JE = energetic (penetrating) electron current density
- JA = ambient plasma current density
- JPHOTO = current density from photoelectric emission
- JSEC = current density from secondary electron emission
- JBS = current density from backscattered electrons
- P = the spin period of the satellite, 3 secs.
-T = period of elevated energetic electron populations prior to the

charging event, approximateiy 1 hour

Here Jm must be greater than JSEC + JBs in order for there to be net negative

charging or shadowed surfaces. This is the limiting case for zero potential.

While the satellite is positive, terms such the photocurrent are substantially

reduced. The solution of the integral JE dt is equation (12) so that the total

deposited charge density is given by:
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S. j

(17) Jed- J8 (1-e " ) at t- T
T

3. Charge Deposition in the Coversides

The solar cell slide cover slides on ISEE1 were made of 0.03 cm thick

Corning 7940 industrial grade fused silica [Ref. 4 3:p. 2-3]. The energy range

of electrons that would deposit within the body of the slide was determined to

be roughly 100 to 200 keV. Electron penetration depth versus energy is shown

for SiO 2 in Figure 12 This range was determined from tabulated values of

electron penetration depths for Corning 7740 industrial grade fused silica

[Ref. 37:p. 123 ]. While the 7740 glass does not have the same composition as

the 7940 glass, negligible error should be introduced in the electron

penetration depths. The primary difference between these glasses is the 7740

is less "pure", that is to say it has been doped. The effective atomic number

and atomic weight are essentially unchanged. From equation (14) it is

apparent these are the critical parameters in material stopping power.

[Ref. 44:p. 16]

The intrinsic conductivity of Corning 7940 glass is ai = 1x10 15 (Q-m) 1,

the dielectric constant, k = 3.8 [Ref. 44:p. 16]. Conductivity is a function of

temperature, as shown in Figure 13. The goal of thermal control systems

onboard spacecraft is to achieve an operating environment suitable for the

instruments. The vast preponderance of scientific instruments operate in a

temperature region near 25*C, and this value will be adopted for the surface
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temperature. The effect of radiation on the conductivity was considered.

Radiation induced conductivity (RIC) was calculated from equation (13). The

dose rate used was the maximum dose averaged over the thickness of the

sample. A summary of these calculations is provided in Table IV.

4. Summary of the ISEE1 Charging Results

Data from the ISEE1 charging event, and several variations of this

data, were applied to equation (16). Table V is a summary of these results.

The effect of radiation induced conductivity was taken into account. This effect

resulted in about a 20% to 25% reduction in the deposited charge densities.

The calculations show that for the ISEE1 data set this mechanism does not

produce sufficient deposited charge to result in differential charging of the

satellite. However, an order of magnitude increase in the high energy (100-200

keV) electron flux does result in negative charge on the dielectric. This is

within the accepted range of the 100 to 200 keV electron flux measurements.

It is also appropriate for the uncertainty associated with the photoelectric

current. An order of magnitude decrease in the photoelectric current would be

necessary to create conditions in which the deposition of charge in the cover

sides would be sufficient to produce differential charging of the satellite for our

900 pitch angle measurements of the ambient spectra.

The energetic fluxes observed in conjunction with the ISEE1 charging

event are by no means extreme values for the geosynchronous substorm

environment. Reagan et al. (1983) reported energetic flux (100 to 300 keV)
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values during magnetic storms, and substorms that were as much as 2 orders

of magnitude greater than the ISEE1 fluxes (see Figure 14). It appears that it

is then possible for net negative charge to be established, and hence

differential charging induced barriers can form.

B. MATERIAL RESPONSE

Surface potential measurements are made by the SSPM instruments

onboard the SCATHA satellite for several common spacecraft materials.

Trends in these potentials for two materials, Teflon and Kapton, were

measured during a period of magnetospheric activity, and will be compared to

calculated deposited charge densities. These materials are of interest because

both are used extensively as spacecraft thermal control surfaces.

1. Charging Environment

The time period from day 160 to 170 (Julian dates), 1980, was identified

by Baker et al.(1984) as one of intense magnetospheric activity characterized

by elevated energetic electron fluxes. Extremely high flux levels for very

energetic electrons (2 to 7 MeV) were recorded. [Ref. 45:p. 9] The DST index

is plotted in Figure 15 for this period. Unfortunately the energetic (30 to 100

keV) electron flux data for this period was unavailable at the time of this

writing. However elevated energetic electron flux levels can be inferred from

the DST index alone. For calculational purposes the flux levels recorded by the

ISEE1 instruments will be used.
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2. Sample Characteristics

The calculations made for the ISEE1 cover slides were repeated for both

the Teflon and Kapton samples. The thicknes3 of both SSPM samples is

127pm. The energy range of electrons that would deposit within each sample

was found to be:

- Teflon 35 to 125 keV
- Kapton 35 to 100 keV

The electron penetration range versus energy is shown for both Teflon and

Kapton in Figures 16 and 17 respectively. Comparison to the penetration

depth of energetic electrons in SiO 2 (Figure 11) reveals that a much lower

range of electron energies deposit within the body of these two dielectrics. In

terms of spacecraft charging, this means that Teflon and Kapton are

vulnerable to charge deposition from electrons with energies characterized by

.much higher ambient flux levels than those affecting SiO 2. Table VI

summarizes the results of these calculations; the SiO 2 results are repeated for

comparison.

The saturation values for deposited charge were calculated because

SCATHA is a geosynchronous orbit satellite and thus is subjected to elevated

electron flux levels for longer periods of time than ISEE 1. It can be concluded

from the DST index that the magnetic storm activity for this period exceeded

the material time constant, c, in each case. In two cases (the intrinsic

conductivity values of both SiO2 and Teflon) the saturation charge exceeds the

commonly accepted charge threshold value of 1.6x10 " C/m 2 for dielectric
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breakdown. Should dielectric breakdown be reached, arcing will occur, but

arcing does not remove a significant amount of the bulk charge. An

equilibrium is established such that bulk charge remains below the threshold

value.

Radiation dose rates calculated were on the order of 2 rads/sec for

Teflon and Kapton. RIC for Kapton was not significant. These results are

consistent with those obtained by Reagan et al. [Ref. 46:p. 74].

3. Summary of Results

The surface potential of each material is plotted at 0700LT for each day

in the aforementioned period in Figures 18 and 19. The potentials were

measured at a single local satellite time to eliminate some of the daily

variations to be expected at geosynchronous orbit. Teflon exhibited a trend

towards an increasingly negative potential. The Teflon surface potential

became more negative by approximately 440 V. The Kapton sample retained

a fairly constant value of -25 V (relative to the spacecraft mainframe)

throughout this period. The Teflon measurements are qualitatively consistent

with the values in Table VI. The Kapton results, however are more difficult

to explain.

Using the simple relationship Q = VC, and a capacitance of 100pF/m2

(considered standard for spacecraft surfaces [Ref. 47]), the accumulated charge

densities calculated for Teflon can easily account for the observed change in

potential. For example, the smallest accumulated charge density for Teflon is
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2.4x10 , which yields a potential of 240 kV. Of course, this high of a potential

would never be reached because electrical breakdown would occur at a much

lower potential. The effect of the surface currents (JsEc,JBS, and JAM) has not

been included and these will of course greatly modify the surface potential.

The constancy of the Kapton sample's voltage throughout the period

studied indicates that this is its equilibrium voltage for the environmental

conditions encountered. The voltage is much less negative than the values of

deposited charge in Table VI would indicate. Kapton has a much higher

intrinsic conductivity than either Teflon or SiO2, and subsequently a much

smaller value of T. This characteristic coupled with the effect of the surface

currents may explain the observed potential, but seems unlikely to the author.

If this were the case, then extremely large potentials would never be expected

on Kapton, yet a differential potential of -2100 V was recorded on the SCATHA

SSPM Kapton sample during a substorm event in March of 1978 [Ref. 46:p 81].

Energetic electrons of energies ranging from roughly 1 to 200 keV have

been associated w: h spacecraft surface charging phenomena by Reagan et al.

for SCATHA [Ref. 46:p.74-85]. Mullen et al. (Feb 1986) did a correlation

analysis on the total electron flux and levels of the frame potential for several

SCATHA charging events. They concluded that the high-energy portion of the

electron flux drives spacecraft charging. The strongest correlation was to the

58.3 keV instrument channel, encompassing the energy range 30 to 75 keV.

Additional correlation was found from the 23.8 keV channel up to the 335 keV
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channel, depending on the day presented. These results are shown in Figure

20. The primary concern in Mullen's work was surface charging, however

these energy ranges also correspond to enhanced dielectric charging. This

work suggests that the correlation between the daylight charging events

observed on SCATHA and intense 50 -100 keV electron fluxes may be partially

due to deep dielectric charging. [Ref. 48:p. 1484-85]
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V. CONCLUSIONS

Energetic electrons (keV electrons) play a definite role in spacecraft

charging. The precise role of a given energy ranges depends on material. The

energy range from 30 to 100 keV was found to be the energy range at which

electrons will deposit within a dielectric such as Kapton, or Teflon. Fused

silica required a harder energy spectrum for penetration, 100 to 200 keV.

Qualitatively, electron deposition within the bulk of exterior dielectrics as

a mechanism capable of producing spacecraft charging has been

demonstrated. Energetic (10-100 keV) electrons deposit within exterior

dielectrics, and have a substantial lifetime within these dielectrics. The

deposited negative charge can eventually exceed the positive charge left by the

electron flux departing the surface as a result of photo, secondary, and

backscattered electron emissions. The results in Table V support this

mechanism as the cause of the ISEE1 charging event if the higher values for

energetic electron fluxes are used. The electron flux data, and calculated flux

values used in thesis are accurate to an order of magnitude (JE, JPHoo, JAMs,

etc.). Variations reflecting these approximations are included in Table V, and

demonstrate that the deposition of electrons within exterior dielectrics can be

the dominant process in environments not uncommon to geosynchronous orbit.
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The mechanism appears to be general and will be important on most

synchronous altitude satellites.

Further work is recommended in several areas. First, it is recommended

that a computer simulation be used to determine the charge and energy

deposition distributions within the dielectric as a function of depth. The energy

ranges used in this thesis to calculate the deposited charge were restricted to

specific ranges, future work should apply deposition algorithms to the entire

energy spectrum to which the spacecraft is exposed, specifically the energy

range below 1 keV should not be neglected. From this information electric

fields, conductivities, and thus leakage currents within the dielectric can be

much more accurately determined. Second, another computer simulation, to

model the satellite potential as a function of time, is necessary. To properly

understand this mechanism, one needs to study how the satellite reaches its

equilibrium potential as it is dictated by all the discussed surface phenomena

(photoelectric effect, secondary electrons, etc.) as well as the impact of

deposited charge. An attempt was made to program the aforementioned

phenomena but was met with some difficulty. Finally, the mechanism needs

to be thoroughly tested against in situ flux and potential measurements.
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APPENDIX A

TABLE I

EXPERIMENTAL DATA ON PHOTOEMISSION

[Ref. 31:p. 171]

MATERIAL SATURATION CURRENT

DENSITY

[1]n42]

Indium Oxide 30.0

Aluminum Oxide 42.0

Gold 29.0

Aquadag 18.0

Average 21.0
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TABLE II

SECONDARY EMISSION PARAMETERS

[Ref. 29:p. 1210,, Ref. 3 0:p. 1138]

MATERIALS E(max) 8(m ax)

Gold 80eV 1.45

Aluminum 300eV 0.97

Silicon Dioxide 420eV 2.50

Aquadag 350eV 0.75

Teflon 200eV 3.00

Kapton 150eV 2.10
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TABLE III

COEFFICIENTS OF RADIATION INDUCED CONDUCTIVITY

UNITS [SEC/OEM-CM-BAD] [Ref. 35:p. 580]

MATERIAL K. K-

Kapton 6x10-18  1.2x10"9

Teflon lXlo016  2x10-'8

Mylar 2.1xl10 1 9  1.8x10'19

Polyethylene 4.5x10-18  3x10-19

Polystyrene lx 116 2xl10'
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TABLE IV

ELECTRON FLUXES ENCOUNTERED BY ISSE1 ON DAY 76 1977

CURRENT SOURCE FLUX CURRENT DENSITY

[e/m 2.sec] [C/m 2. sec]

Photoelectric 1.311 x 101' 2.098 x 10.r

Ambient 3.667 X 1012 5.867 x 10-7

Secondary 2.778 x 1012 4.445 x 10-7

Backscattered 5.005 x 1011 8.008 x 10-"

Energetic 7.67 x 109 1.23 x 10-9
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TABLE V

ISEE1 SiO2 RESULTS

ENVIRONMENTAL Q..V %.w. Q.. p . Q..
CONDITIONS Qhadw

[c/m [c/m] [c/m] [c/m]

ISEE1 DATA
N=N. 3.143 x 10- 9.312 x 10- 3.236 x 10 3.138 x 10-5

Jo--J__

Modified
ISEE1 DATA

N=10N. 3.143 x 10-6 9.312 x 10"7 4.075 x 10.6 3.054 x 10r
J.-JEm_

Modified
ISEE1 DATA

N=N. 3.143 x 10-6  9.312 x 108 3.144 x 10r> 3.138 x 10-5
J°=10J__

Modified
ISEE1 DATA

N=10N. 3.143 x 10-5  9.312 x 10-7  3.228 x 10-5 3.054 x 10'6
J°=10J__E. I IIII

N = plasma electron density [/m 3]
Nm M plasma density measured by ISEE1
JE a e.ergetic (E = 100 to 200 keV) electron flux

JEm energetic current density measured by ISEE1 instruments

Qenergetic = dE E/1 (1- J-r)
Q.h~dow = f (Jmb - JSEC - JBs) dt

QOW = f (Jphoto +JsEc + JS - Jamb) dt
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TABLE VI

SSPM AND SiO2 RESULTS

MATERIAL DIELECTRIC T--E/O QSAT PENETRATING
CONSTANT [Secs] Ic/rm FLUX

____ ___ ____ __ ____ ___ ____ ___ ____ __ ____ ___ __ c/m'sec]

Si02
(Corning 7940)

- intrinsic 3.8 3.363 x 10W 4.14 x 10-3  1.23 x 107

- RIC.. 3.8 4.931 x 103 1.24 x 10-4

-RICm. 3.8

Teflon

- intrinsic 2.1 1.859 x 105 4.79 x 10-3 2.58 x 10

c/m2.sec

- RIC.. 2.1 929 2.40 x 10. _

- RIC~i, 2.1 4.646 x 104 1.20 x 10-3

Kapton

- intrinsic 3.0 2.66 x 103 6.68 x 10.5  2.51 x 10.8

- RIC.. 3.0 ***

-RICi. 3.0

*** In these cases the additional conductivity introduced due to radiation is not significant
with respect to the intrinsic conductivity of the material.

* These values exceed the commonly accepted breakdown threshold for dielectrics of 1.6 x 103
c/m2.
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Figure, 3
"Midnight-to-Dawn" Satellite Anomaly Pattern
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Figure 4
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Figure 5
ISEE - 1

[Ref. 50:p. 151]
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APPENDIX C

C
C * THIS PROGRAM CALCULATES THE PRIMARY SURFACE CHARGING *
C * CURRENTS INVOLVED IN SPACECRAFT CHARGING *
C
C
C ****VARIABLE DEFINITION****
C
C JOT = TOTAL CURRENT TO THE SURFACE
C JPHOTO = PHOTOELECTRIC CURRENT
C JSEC = SECONDARY ELECTRON CURRENT
C JBS = BACKSCATTERED ELECTRON CURRENT
C YM = MAX SECONDARY YIELD FOR SURFACE MATERIAL
C EM = ENERGY WHERE YM OCCURS
C Z EFFECTIVE ATOMIC NUMBER OF SURFACE MATERIAL
C
C * THE PROGRAM CALULATES THE CURRENTS FOR AN ENVIRONMENT*
C * DESCRIBED BY TWO MAXWELLIAN DISTRIBUTIONS *
C KTi = THE ith PLASMA TEMPERATURE [keV]
C Ni = THE ith DENSITY [M**3]
C TPi = THE ith PROTON TEMPERATURE
C
C ****VARIABLE INITIALIZATION*****

REAL JPHOTO,JSEC,JBS,JAMB
REAL KT1 ,N1,Tpl,KT2,TP2,N2
REAL YM,EM,Z

C
C ***DATA FILES--INPUT***
C
C *THE PROGRAM READS DATA FROM AN INPUT FILE, IPDATA.DAT*
C *THE VARIALBES READ FROM THE FILE ARE GIVEN BELOW, AND*
C * THE FORMAT STATEMENTS TELL HOW TO CONSTRUCT THE FILE*
C
C "THE PROGRAM ALSO REQUIRES TWO FILES CONTAINING THE**
C ** LAGUERRE ZEROS AND WEIGHTS FOR INTEGRATION THESE **

C **THESE ARE CONTAINED IN THE FILES XI.DAT & WTS.DAT **
C

OPEN (UNIT= 1,FILE='WTS.DAT',STATUS='OLD')
OPEN (UNIT=2,FILE=X.DAT,STATUS='OLD')
OPEN (UNIT=8,FILE='IPDATA.DAT',STATUS='OLD')
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C ****PROGRAM INPUTS****
C
C ****READ FROM THE FILE****

READ(8,110) KT1,Tpl,NI
READ(8,1 10) KT2,Tp2,N2
READ(8,120) YM,EM
READ(8,130) Z
REWIND 8

C
C ***CONVERSION TO MKS FOR CALCULATIONS****
C

KT1 = KT1*1.6E-16
Tpl = Tp1*1.6E-16
KT2 = KT2*1.6E-16
Tp2 = Tp2*1.6E-16

C
C ****MAIN PROGRAM SECTION****
C
C **SUBROUTINE CALLS**
C

CALL PHOTOJ(JPHOTO)
CALL AMBIENT(KT1 ,N1,KT2,N2,Tpl,TP2,JAMB)
CALL SECOND(KT1,N1,KT2,N2,JSEC,YM,EM)
CALL BACKES(KT1,N1,KT2,N2,JBS,Z)

C
C ***FORMAT STATEMENTS***
C

110 FORMAT (2F3.1,E8.2)
120 FORMAT (F3.1,F5.1)
130 FORMAT (F4.1)
140 FORMAT (F7.1,1X,E10.4)

C
END

C
C
C *****SUBROUTINES*****
C
C ****THIS MODULE CALCULATES THE PHOTOELECTRIC CURRENT****
C

SUBROUTINE PHOTOJ(JPHOTO)
REAL JPHOTO
JPHOTO = (2.1E-5)/(1.602E-19)
PRINT*,'JPHOTO = ',JPHOTO
RETURN
END

C
C ***THIS MODULE CALCULATES THE AMBIENT PLASMA CURRENTS***
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C
SUBROUTINE AMBIENT(KT1,N1,KT2,N2,Tpl ,Tp2,JAMB)
REAL JAMB,N1,N2,Me,Mp,KT1 ,KT2,Tpl ,Tp2,P113. 141592/
REAL JIONS1,JIONS2,JE1,JE2,JAMB1,JAMB2

C
C ***VTARIABLE DECLARATION & INITIALIZATION*
C

Mp = 1.67E-27
Me = 9.11E-31

C
JE1 = N1*SQRT(KTI)/SQRTZPI*2.0*Me)
JIONSi Nl*SQRT(Tpl)/SQRT(PI*2.0*Mp)
JAMB1 JEl-JIONSi
JE2 = N2*SQRT(KT2)/SQRT(PI*2.0*Me)
JIONS2 =N2*SQRT(Tp2)/SQRT(PI*2.0*Mp)

JAMB2 =JE2-JIONS2

JAMB = JAMB31+JAMB2
PRINT*,'JAMB = ',JAMB3
RETURN
END

C
C "*SUBROUTINE TO CALCULATE THE SECONDARY ELECTRON EMISSION
C

SUBROUTINE SECOND(KT1,Nl,KT2,N2,JSECYM,EM)
REAL M19.11E-311,PI13.141592/,YM,EM
REAL Wi,Xi,FX1 ,FX2,SUM1 ,SUM2,R1,R2,N1,N2
REAL KT1 ,KT2,JSECJSECI,JSEC2
REAL FACT1,FACT2,RESI,RES2
INTEGER J

C
C ***VARABLE DEFINITION***
C

EM = EM*1.6E-16
C
C ***LAGUERRE INTEGRATION*
C

SUMi = 0.0
SUTM2 = 0.0
DO 10 J=1,5

READ (1,*)Wi
READ (2,*)Xi
Rl = (-.20)*SQRT((KTJIEM)*Xi)
FX1 = (Xi**2.0)*EXP(Rl)
RESI Wi*FX1
SUM1 SUMi + RES1
R2 = (-2.0)*SQRT((KT2JEM)*Xi)
jg.2 = (X1**2.O)*8XP(R2)
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RES2 =Wi*FX2

SUM2 =SUM2 + RES2
10 CONTINUE

FACT]. (7.4*Nl/SQR1 2*PI*M))*(YM4/EM)*(KT1**1.5)
JSEC1 =FACT1*SUM1

FACT2 =(7.4*N2/SQRT(2*PI*M))*(YMEM)*(KVj2**1.5)

JSEC2 =FACT2*SUM2

JSEC = JSEC1+JSEC2
REWIND 1
REWIND 2
PRIN*,'JSECS= ',JSEC
RETURN
END

C.
C ****THIS MODULES CALCULATES THE BACKSCA ITERED ELECTRONS
C

SUBROUTINE BACKES(KT1 ,N1 KT2,N2,JBS,Z)
C *****NUMERICAL INTEGRATION OF BACKSCA'ITERED ELECTRONS"***
C
C ""*VARIAB~LE DEFINITION"***

REAL JBS,JBS1,JBS2,R,R2,KTEV1,KTEV2
REAL KT1 ,KT2,B,N1 ,N2,Z,PI/3. 141592/
REAL M/9. 11E-31/,C1 ,C2,C11,C12,C21,C22
REAL RES 1,RES2,FX1,FX2,SUM1,SUM2

C
C ""*CALCULATIONS""*
C

KTEV1 = KT1/1.6E-16
KTEV2 = K72/1.6E-16
B = 10.0*(1-(2/2.7183))*(0.037*Z)
DO 20 1 =1,5
READ (1,*) Wi
READ (2,*) Xij
R1 = Xi*KTEV1/5.0
FX1 = (1.0-(0.05/(Xi*KTEV1 )))*(B+EXcP(Rl))*Xi
RESi Wi*FX1
SUMi SUMi +RES1

R2= -Xi*KTEV2/5O0
FX2 = (1.0-(0.05/(Xi*KTEV2)))*(B+EXP(R2))*Xi
RES2 =Wi*FX2

SUM2 =SUM2 +RES2
20 CONTINUE

Cll = 0.1*Nl/SQRT(PI*M*2.0)
C12 = SQRT(KT1)
Cl = C11*C12
JBS1 = SUM1*C1
C21 = 0.1*N2/SQRT(PI*M*2.0)
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022 = SQRT(KT2)
02 = 021*022
JBS2 = SUM2*C2
JBS = JBS1+JBS2
REWIND 1
REWIND 2
PRINT*,'JBS = ,jBS
RETURN
END
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